

Jotatemp 210

Product description

This is a two component, polyamide cured phenolic/novolac epoxy coating. It is a heat resistant coating that offers corrosion protection in temperatures ranging from -196 °C (-321 °F) cryogenic and up to 210 °C (410 °F), continuous and cyclic conditions. For peak operational temperatures up to 230 °C (446 °F), please contact your local Jotun office. It is suitable for non-insulated and insulated surfaces, where wet surroundings can give a risk of corrosion under insulation (CUI). This product is fast curing and can be applied during winter season at temperatures down to -10 °C (14 °F). This product may be used as a primer, mid coat or finish coat in atmospheric environments. Suitable for properly prepared carbon steel, galvanised steel and stainless steel substrates. For other substrates please contact your local Jotun office.

Scope

The Application Guide offers product details and recommended practices for the use of the product.

The data and information provided are not definite requirements. They are guidelines to assist with efficient and safe use, and optimum service of the product. Adherence to the guidelines does not relieve the applicator of responsibility for ensuring that the work meets specification requirements. Jotuns liability is in accordance with general product liability rules.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

Referred standards

Reference is generally made to ISO Standards. When using standards from other regions it is recommended to reference only one corresponding standard for the substrate being treated.

Surface preparation

The required quality of surface preparation can vary depending on the area of use, expected durability and if applicable, project specification.

When preparing new surfaces, maintaining already coated surfaces or aged coatings it is necessary to remove all contamination that can interfere with coating adhesion, and prepare a sound substrate for the subsequent product.

Inspect the surface for hydrocarbon and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area using fresh water. Paint solvents (thinners) shall not be used for general degreasing or preparation of the surface for painting due to the risk of spreading dissolved hydrocarbon contamination. Paint thinners can be used to treat small localized areas of contamination such as marks from marker pens. Use clean, white cotton cloths that are turned and replaced often. Do not bundle used solvent saturated cloths. Place used cloths into water.

Process sequence

Surface preparation and coating should normally be commenced only after all welding, degreasing, removal of sharp edges, weld spatter and treatment of welds is complete. It is important that all hot work is completed before coating commences.

Soluble salts removal

Soluble salts have a negative impact on the coating systems performance, especially when immersed. Jotun's general recommendations for maximum soluble salts (sampled and measured as per ISO 8502-6 and -9) content on a surface are:

For areas exposed to (ISO 12944-2): C1-C4: 200 mg/m² C5: 100 mg/m²

Date of issue: 16 May 2023

Page: 1/9

This Application Guide supersedes those previously issued.

Carbon steel

Initial rust grade

The steel shall be Rust Grade A or B (ISO 8501-1). For steel with Rust Grades C or D, contact your nearest Jotun office for advice.

Initial inspection and pretreatment

Inspect the surface for contaminations and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water.

Non-contaminated areas shall be washed down by Low-Pressure Water Cleaning (LPWC) to Wa 1 (ISO 8501-4) using fresh water to reduce the concentration of surface chlorides.

Metal finishing

For areas in corrosivity category C1 to C4 (ISO 12944-2) all irregularities, burrs, slivers, slag and spatter on welds, sharp edges and corners shall conform to minimum grade P2 (ISO 8501-3) Table 1, or as specified. For areas in corrosivity category C5 the requirement is conformance to grade P3 (ISO 8501-3) Table 1. All edges shall have a rounded radius of minimum 2 mm, or subjected to three pass grinding or equally effective method. One may use a mechanical grinder fitted with a suitable abrasive disc. All sharp irregularities, burrs, slivers, slag and spatter on welds, whether apparent before or after blast cleaning, shall be removed before coating application. It is recommended that welding smoke is removed by water cleaning according to ISO 12944-4, section 6.2.1. Welding smoke residues are water soluble and could cause blistering if not removed by washing before blasting.

Pitting repair

Pittings in steel can be difficult to cover fully with most coatings. In some areas it is practically feasible to use filler to fill pittings. This should then be done either after the initial surface preparation or after application of first coat.

Abrasive blast cleaning

Cleanliness

After pre-treatment is complete, the surface shall be dry abrasive blast cleaned to Sa $2\frac{1}{2}$ (ISO 8501-1) using abrasive media suitable to achieve a sharp and angular surface profile.

Surface profile

The surface shall have a sharp and angular surface profile $30-85 \mu$ m, grade Fine to Medium G (ISO 8503-2). Measure the achieved profile with surface replication tape (Testex) (ISO 8503-5) or by surface roughness stylus instrument (ISO 8503-4).

Abrasive media quality

The selected abrasive must be compatible with both the surface to be blast cleaned and the specified coating system. The abrasive shall meet specifications as per relevant parts of ISO 11124 (Specification for metallic blast-cleaning abrasives), or ISO 11126 (Specification for non-metallic blast-cleaning abrasives). It should be sampled and tested as per relevant parts of ISO 11125 (metallic abrasives) or ISO 11127 (non-metallic abrasives). Dry storage of abrasive and shelter for blasting pots is necessary to prevent equipment becoming clogged with damp abrasive.

All abrasive blast media used should be new and not recirculated, with the exception of steel grit. If this is utilized the circulation process must include a cleaning process.

Compressed air quality

The supply of clean air to blasting pots must be secured to avoid contamination of abrasive and thereby of blast cleaned surfaces. Compressors must be fitted with sufficient traps for oil and water. It is also recommended to fit two water separators at the blasting machine to ensure a supply of moisture-free air to the abrasive chamber.

Dust contamination

Date of issue: 16 May 2023

This Application Guide supersedes those previously issued.

Application Guide Jotatemp 210

At the completion of abrasive blasting the prepared surface shall be cleaned to remove residues of corrosion products and abrasive media, and inspected for surface particulate contamination. Maximum contamination level is rating 2 (ISO 8502-3). Dust size no greater than class 2. Continue cleaning until testing shows the required result.

Hand and Power Tool Cleaning

Power tool cleaning

Surfaces to be coated shall be prepared by mechanical preparation methods to minimum St 2 (ISO 8501-1). Suitable methods are disc grinding, hand sanding or hand wire brushing. If power wire brushing is used, care should be taken not to polish the metal surface, as this can reduce adhesion of the coating. The surface should appear rough and mat.

Overlapping zones to intact coating shall have all leading edges feathered back by sanding methods to remove all sharp leading edges and establish a smooth transition from the exposed substrate to the surrounding coating. Consecutive layers of coating shall be feathered to expose each layer and new coating shall always overlap to an abraded existing layer. Abrade intact coatings around the damaged areas for a minimum 100 mm to ensure a mat, rough surface profile, suitable for over coating.

Water jetting

Not recommended

Galvanised steel

Abrasive blast cleaning

After removal of excess zinc and surface defects the area to be coated shall be degreased to ISO 12944-4, Part 6.2.4 Alkaline Cleaning. The galvanised surface shall be sweep blast-cleaned with the nozzle angle at 45-60° from perpendicular at reduced nozzle pressure to create a sharp and angular surface profile using approved non-metallic abrasive media. As a guide, a surface profile 25-55 μ m, grade Fine G; Ry5 (ISO 8503-2) should be achieved.

Care must be exercised when sweep blasting. The zinc coating thickness should be reduced as little as possible, preferably not more than 10 $\mu m.$

Smaller areas can be lightly treated with abrasive paper.

Finished surfaces shall be dull, profiled and show no areas of shiny metal.

Do not handle the prepared surface with bare hands.

Hand and Power Tool Cleaning

After removal of excess zinc and surface defects the area to be coated shall be degreased with an alkaline detergent, washed by Low-Pressure Water Cleaning (LPWC) to a grade corresponding to the description of Wa 1 (ISO 8501-4) or higher standard and the surface abraded using mechanical or hand sanding methods using non-metallic abrasives or bonded fibre abrasive pads to remove all polish and to impart a scratch pattern to the surface. Do not use high speed rotational sanders.

Stainless steel

Abrasive blast cleaning

After removal of surface defects, the area to be coated shall be degreased according to ISO 12944-4, section 6.2.1 Water cleaning or 6.2.4 Alkaline Cleaning. The surface shall be sweep blast-cleaned with the nozzle angle at 45-60° from perpendicular at reduced nozzle pressure to create a sharp and angular surface profile using approved non-metallic abrasive media. As a guide, a surface profile 25-55 μ m, grade Fine to Medium G; Ry5 (ISO 8503-2) should be achieved.

Hand and Power Tool Cleaning

After removal of surface defects the area to be coated shall be degreased to ISO 12944-4, Part 6.2.4 Alkaline Cleaning, and the surface abraded using mechanical or hand sanding methods using non-metallic abrasives or bonded fibre abrasive pads to remove all polish and to impart a scratch pattern to the surface. Do not use high speed rotational sanders.

Date of issue: 16 May 2023

Page: 3/9

This Application Guide supersedes those previously issued.

Page: 4/9

Coated surfaces

Shop primers

Shop primers are accepted as temporary protection of steel plates and profiles. However, for optimal performance, the shopprimer should be completely removed through blast cleaning to minimum Sa $2\frac{1}{2}$ (ISO 8501-1) using abrasive media suitable to achieve a sharp and angular surface profile 45-85 μ m, grade Medium G; Ry5 (ISO 8503- 2).

Application

Acceptable environmental conditions - before and during application

Before application, test the atmospheric conditions in the vicinity of the substrate for the dew formation according to ISO 8502-4.

Air temperature	-10 - 40	°C
Substrate temperature	-10 - 40	°C
Relative Humidity (RH)	10 - 85	%

The following restrictions must be observed:

• Only apply the coating when the substrate temperature is at least 3 °C (5 °F) above the dew point

• Do not apply the coating if the substrate is wet or likely to become wet

• Do not apply the coating if the weather is clearly deteriorating or unfavourable for application or curing

• Do not apply the coating in high wind conditions

Product mixing

Product mixing ratio (by volume)

Jotatemp 210 Comp A	4 part(s)
Jotatemp 210 Comp B	1 part(s)

Induction time and Pot life

Paint temperature	23 °C
Pot life	8 h

The temperature of base and curing agent is recommended to be 18 °C or higher when the product is mixed.

Thinner/Cleaning solvent

Thinner:

Jotun Thinner No. 23 / Jotun Thinner No. 17

Date of issue: 16 May 2023

This Application Guide supersedes those previously issued.

Application data

Spray application

Airless Spray Equipment

Pump ratio (minimum) :	42:1
Pressure at nozzle (minimum) :	150 bar/2100 psi
Nozzle tip (inch/1000) :	19-31
Nozzle output (litres/minute) :	1.3-2.2
Filters (mesh) :	70

Several factors influence, and need to be observed to maintain the recommended pressure at the nozzle. Among factors causing pressure drop are:

- extended hoses or hose bundles

- extended hose whip-end line
- small internal diameter hoses
- high paint viscosity
- large spray nozzle size
- inadequate air capacity from compressor
- incorrect or clogged filters

Film thickness per coat

Typical recommended specification range

Dry film thickness	100	-	200	μm
Wet film thickness	170	-	330	μm
Theoretical spreading rate	6	-	3	m²/l

Can be used as a production primer down to a dry film thickness of 50 μ m as part of a complete heat resistant system, provided that maximum overcoating interval and sufficient surface preparation between coats are maintained as per Technical Data Sheet and Application Guide. This product can be applied up to 50 % higher than maximum specified film thickness without loss of technical properties.

Film thickness measurement

Wet film thickness (WFT) measurement and calculation

To ensure correct film thickness, it is recommended to measure the wet film thickness continuously during application using a painter's wet film comb (ISO 2808 Method 1A). The measurements should be done as soon as possible after application.

Fast drying paints may give incorrect (too low) readings resulting in excessive dry film thickness. For multi layer physically drying (resoluble) coating systems the wet film thickness comb may give too high readings resulting in too low dry film thickness of the intermediate and top coats.

Use a wet-to-dry film calculation table (available on the Jotun Web site) to calculate the required wet film thickness per coat.

Dry film thickness (DFT) measurement

When the coating has cured to hard dry state the dry film thickness can be checked to SSPC PA 2 or equivalent standard using statistical sampling to verify the actual dry film thickness. Measurement and control of the WFT and DFT on welds is done by measuring adjacent to and no further than

15 mm from the weld.

Date of issue: 16 May 2023

Page: 5/9

This Application Guide supersedes those previously issued.

Ventilation

Sufficient ventilation is very important to ensure proper drying/curing of the film.

Drying process

Do not attempt to speed up the curing process by blowing hot air on to the wet coating film as this may lead to skin drying/curing, entrapped solvents and consequently solvent blistering and inferior corrosion protection.

Coating loss

The consumption of paint should be controlled carefully, with thorough planning and a practical approach to reducing loss. Application of liquid coatings will result in some material loss. Understanding the ways that coating can be lost during the application process, and making appropriate changes, can help reducing material loss.

Some of the factors that can influence the loss of coating material are:

- type of spray gun/unit used
- air pressure used for airless pump or for atomization
- orifice size of the spray tip or nozzle
- fan width of the spray tip or nozzle
- the amount of thinner added
- the distance between spray gun and substrate
- the profile or surface roughness of the substrate. Higher profiles will lead to a higher "dead volume"
- the shape of the substrate target
- environmental conditions such as wind and air temperature

Drying and Curing time

Substrate temperature	-10 °C	-5 °C	0 °C	5 °C	10 °C	23 °C	40 °C
Surface (touch) dry	36 h	13 h	10 h	6 h	4 h	2 h	1 h
Walk-on-dry	72 h	28 h	24 h	19 h	10 h	3 h	2 h
Dry to over coat, minimum	48 h	22 h	18 h	10 h	5 h	3 h	2 h
Dried/cured for service	28 d	21 d	14 d	12 d	10 d	7 d	3 d

Drying and curing times are determined under controlled temperatures and relative humidity below 85 %, and at average of the DFT range for the product.

Surface (touch) dry: The state of drying when slight pressure with a finger does not leave an imprint or reveal tackiness.

Walk-on-dry: Minimum time before the coating can tolerate normal foot traffic without permanent marks, imprints or other physical damage.

Dry to over coat, minimum: The recommended shortest time before the next coat can be applied.

Dried/cured for service: Minimum time before the coating can be permanently exposed to the intended environment/medium.

Maximum over coating intervals

Maximum time before thorough surface preparation is required. The surface must be clean and dry and suitable for over coating. Inspect the surface for chalking and other contamination and if present, remove with an alkaline detergent. Agitate the surface to activate the cleaner and before it dries, wash the treated area by low-pressure water cleaning using fresh water.

If maximum over coating interval is exceeded the surface should in addition be carefully roughened to ensure good inter coat adhesion.

Date of issue: 16 May 2023

Page: 6/9

This Application Guide supersedes those previously issued.

The referred intervals relate specifically to over coating with Jotun Performance Coating products.

Areas for atmospheric expos	sure						
Average temperature during drying/curing	-10 °C	-5 °C	0 °C	5 °C	10 °C	23 °C	40 °C
Itself	3 mth	3 mth	3 mth	3 mth	3 mth	3 mth	2 mth

Other conditions that can affect drying / curing / over coating

Repair of coating system

Damages to the coating layers:

Prepare the area through sandpapering or grinding, followed by thorough cleaning/vacuuming. When the surface is clean and dry the coating may be over coated by itself or by another product, ref. original specification.

Always observe the maximum over coating intervals. If the maximum over coating interval is exceeded the surface should be carefully roughened in order to ensure good intercoat adhesion.

Damages exposing bare substrate:

Remove all rust, loose paint, grease or other contaminants by spot blasting, mechanical grinding, water and/or solvent washing. Feather edges and roughen the overlap zone of surrounding intact coating. Apply the coating system specified for repair.

Areas with too low DFT:

Roughen the surface, vacuum and apply new coating according to specification.

Areas with too high DFT:

Areas with DFT above maximum specified for isolated areas shall be ground down to acceptable thickness, or down to bare steel and recoated.

Repair of damaged areas

Sags and runs can be caused by too high wet film thickness, too much thinner added or the spray gun used too close to the surface.

Repair by using a paint brush to smooth the film when still wet.

Sand down to a rough, even surface and re-coat if the coating is cured.

Orange peel can be caused by poor flow/levelling properties of the paint, poor atomization of the paint, thinner evaporating too fast or the spray gun held too close to the surface.

This can be rectified by abrading the surface and applying an additional coat after having adjusted the application properties or the application technique.

Dry spray can be caused by poor atomization of the paint, spray gun held too far from the surface, high air temperature, thinner evaporating too fast or coating applied in windy conditions.

Sand down to a rough even surface and re-coat.

Pinholes can be caused by entrapped solvents in the film or by incorrect application technique. Pinholes can be repaired as per procedure for damages to the coating layer or to the substrate, ref. above.

Coating film continuity

When required by the specification, the coating shall be tested for film discontinuity according to ASTM D 5162, test method A or B as appropriate for the actual dry film thickness. All recorded defects shall be repaired by best practical means.

Date of issue: 16 May 2023

This Application Guide supersedes those previously issued.

Quality assurance

The following information is the minimum required. The specification may have additional requirements.

- Confirm that all welding and other metal work has been completed before commencing pre-treatment and surface preparation

- Confirm that installed ventilation is balanced and has the capacity to deliver and maintain the RAQ

- Confirm that the required surface preparation standard has been achieved and is held prior to coating application

- Confirm that the climatic conditions are within recommendations in the AG, and are held during the application

- Confirm that the required number of stripe coats have been applied
- Confirm that each coat meets the DFT requirements in the specification
- Confirm that the coating has not been adversely affected by rain or other factors during curing

- Observe that adequate coverage has been achieved on corners, crevices, edges and surfaces where the spray gun cannot be positioned so that its spray impinges on the surface at 90° angle

- Observe that the coating is free from defects, discontinuities, insects, abrasive media and other contamination

- Observe that the coating is free from misses, sags, runs, wrinkles, fat edges, mud cracking, blistering, obvious pinholes, excessive dry spray, heavy brush marks and excessive film build

- Observe that the uniformity and colour are satisfactory

All noted defects shall be fully repaired to conform to the coating specification.

Caution

This product is for professional use only. The applicators and operators shall be trained, experienced and have the capability and equipment to mix/stir and apply the coatings correctly and according to Jotun's technical documentation. Applicators and operators shall use appropriate personal protection equipment when using this product. This guideline is given based on the current knowledge of the product. Any suggested deviation to suit the site conditions shall be forwarded to the responsible Jotun representative for approval before commencing the work.

For further advice please contact your local Jotun office.

Health and safety

Please observe the precautionary notices displayed on the container. Use under well ventilated conditions. Do not inhale spray mist. Avoid skin contact. Spillage on the skin should immediately be removed with suitable cleanser, soap and water. Eyes should be well flushed with water and medical attention sought immediately.

Accuracy of information

Always refer to and use the current (last issued) version of the TDS, SDS and if available, the AG for this product. Always refer to and use the current (last issued) version of all International and Local Authority Standards referred to in the TDS, AG & SDS for this product.

Colour variation

When applicable, products primarily meant for use as primers or antifoulings may have slight colour variations from batch to batch. Such products and epoxy based products used as a finish coat may chalk when exposed to sunlight and weathering.

Colour and gloss retention on topcoats/finish coats may vary depending on type of colour, exposure environment such as temperature, UV intensity etc., application quality and generic type of paint. Contact your local Jotun office for further information.

Reference to related documents

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

When applicable, refer to the separate application procedure for Jotun products that are approved to classification societies such as PSPC, IMO etc.

Symbols and abbreviations

TDS = Technical Data Sheet
AG = Application Guide
SDS = Safety Data Sheet
VOC = Volatile Organic Compound
MCI = Jotun Multi Colour Industry (tinted colour)

Date of issue: 16 May 2023

Page: 8/9

This Application Guide supersedes those previously issued.

Application Guide Jotatemp 210

RAQ = Required air quantity $\mu m = microns = micrometres$ PPE = Personal Protective Equipment g/I = grams per litreg/kg = grams per kilogram EU = European Union $m^2/l =$ square metres per litre UK = United Kingdom mg/m² = milligrams per square metre EPA = Environmental Protection Agency psi = unit of pressure, pounds/inch² ISO = International Standards Organisation Bar = unit of pressure ASTM = American Society of Testing and Materials RH = Relative humidity (% RH)AS/NZS = Australian/New Zealand Standards UV = Ultraviolet NACE = National Association of Corrosion Engineers DFT = dry film thickness SSPC = The Society for Protective Coatings WFT = wet film thickness PSPC = Performance Standard for Protective Coatings IMO = International Maritime Organization ASFP = Association for Specialist Fire Protection

Disclaimer

The information in this document is given to the best of Jotun's knowledge, based on laboratory testing and practical experience. Jotun's products are considered as semi-finished goods and as such, products are often used under conditions beyond Jotun's control. Jotun cannot guarantee anything but the quality of the product itself. Minor product variations may be implemented in order to comply with local requirements. Jotun reserves the right to change the given data without further notice.

Users should always consult Jotun for specific guidance on the general suitability of this product for their needs and specific application practices.

If there is any inconsistency between different language issues of this document, the English (United Kingdom) version will prevail.