Application Guide

SteelMaster 90SB

Product description

This is a one component solvent based acrylic thin film intumescent coating. Independently approved for fire protection of structural steel exposed to cellulosic fire. Can be used as mid coat or finish coat in atmospheric environments. Suitable on approved primers on carbon steel substrates.

Scope

The Application Guide offers product details and recommended practices for the use of the product.

The data and information provided are not definite requirements. They are guidelines to assist with efficient and safe use, and optimum service of the product. Adherence to the guidelines does not relieve the applicator of responsibility for ensuring that the work meets specification requirements.

Jotuns liability is in accordance with general product liability rules.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

Referred standards

Reference is generally made to ISO Standards. When using standards from other regions it is recommended to reference only one corresponding standard for the substrate being treated.

Surface preparation

The required quality of surface preparation can vary depending on the area of use, expected durability and if applicable, project specification.

Metal surface preparation refers to requirements for preparation prior to application of approved primers. All steel must be physically clean, dry and free from mud, concrete slurry, grease, zinc salts and other forms of contamination. Complete washing down of steelwork may be necessary. Oil & grease should be removed in accordance with SSPSC SP1 solvent cleaning.

Paint solvents (thinners) shall not be used for general degreasing or preparation of the surface for painting due to the risk of spreading dissolved hydrocarbon contamination. Paint thinners can be used to treat small localised areas of contamination such as dye penetration inks and marker pens. Use clean, white cotton cloths that are turned and replaced often. Do not bundle used solvent saturated cloths. Place used cloths into water.

Process sequence

Surface preparation and coating should normally be commenced only after all welding, degreasing, removal of sharp edges, weld spatter and treatment of welds is complete. It is important that all hot work is completed before coating commences.

Carbon steel

Metal finishing

Surface laminations and sharp edges should be removed, sharp edges must be rounded off smooth prior to priming. Weld spatter, or flux, dust and spent abrasive and all contamination must also be removed before primer application. Ensure substrate is clean and dry before painting.

Date of issue: 19 April 2024 Page: 1/15

Abrasive blast cleaning

Abrasive blasting should not take place under adverse ambient conditions, when relative humidity exceeds 85 % or when the steel temperature is less than 3°C (37°F) above ambient dew point.

Apply the approved primer before degradation of the surface occurs.

Cleanliness

After pre-treatment is complete, the surface shall be dry abrasive blast cleaned to Sa 2% (ISO 8501-1) using abrasive media suitable to achieve a sharp and angular surface profile.

Surface profile

Measure the achieved profile with surface replication tape (Testex) to ISO 8503-5 or by surface roughness stylus instrument to ISO 8503-4.

Achieved surface roughness should be as required by specified primer. The recommended surface profile is 50-75 μ m, grade Fine to Medium G; Ry 5 (ISO 8503-1). However, this profile should not be less than figures stated below for carbon steel and alloys. Finished surfaces shall be dull, profiled and show no areas of shiny metal. Do not handle the prepared surface with bare hands.

Compressed air quality

To avoid contaminating the substrate, the dryness and cleanliness of the compressed air supply used for blast cleaning should be verified by testing the air on a white blotter as per ASTM D4285.

Dust contamination

At the completion of abrasive blasting remove residues of abrasive media and inspect for surface particulate contamination. Maximum contamination level is rating 1 (ISO 8502-3) as per Figure 1 of the standard for dust size no greater than class 2.

Hand and Power Tool Cleaning

Power tool cleaning

Power tool cleaning is only recommended for small areas of repair, typically less than $1\ m^2$ in size where abrasive blasting is expected to create more damage to the coating system than actual benefit to the performance of the coating system.

Power tool cleaning to St 3 (ISO 8501-1). Removal of all loose mill scale, loose rust, loose paint and other loose detrimental foreign matter to a bare metal finish with a surface profile.

Bolts and fixtures

General guidance notes from ASFP recommends that bolt heads should have the same resistance to fire exposure as the steel section. Refer to TSS-TI-099 SteelMaster Protection of Bolt Heads.

Continuous linear fixtures (brackets and angles) should be considered as part of the main beam and duly protected from fire. Refer to TSS-TI-098 Over-cladding and Fixings to Intumescent Protected Steelwork.

Galvanised steel

After removal of excess zinc and surface defects the area to be coated shall be degreased according to ISO 12944-4, section 6.2.4 Alkaline cleaning. The surface shall be sweep blast-cleaned with the nozzle angle at 45-60° from perpendicular at reduced nozzle pressure to create a sharp and angular surface profile using approved nonmetallic abrasive media. As a guide, a surface profile 25-55 μ m, grade Fine to Medium G; Ry5 (ISO 8503-2) should be achieved.

Care must be exercised when sweep blasting. The zinc coating thickness should be reduced as little as possible, preferably not more than $10\ \mu m$.

Finished surfaces shall be dull, profiled and show no areas of shiny metal.

An approved epoxy primer must be applied prior to the SteelMaster system.

Date of issue: 19 April 2024 Page: 2/15

Coated surfaces

Verification of existing coatings including primers

This product must always be applied over a primer approved by Jotun. When the surface is an existing coating, verify with technical data sheet and application guide of the involved products, both overcoatability and the given maximum overcoating interval. Only approved and qualified primers can be used in conjunction with this product. It is the application contractor's responsibility to ensure that only approved primers are used. For the current list of approved primers please contact your local Jotun office.

The applied primer should be:

- Dry and cured enough to stand for overcoating, as per minimum overcoating time stated on manufacturer's TDS
- Strongly adhered to the steel substrate
- Free from any damage, defects or contamination (including oil, grease, soluble salts and dust)
- Uniform in thickness and within the recommended DFT range. It is important to apply the approved primer systems carefully according to the specified DFT as over thickness could affect the performance of the passive fire protection system

Should the primer's suitability for overcoating be in doubt in any way, for example, primer type unknown, primer not approved, excessive dry film thickness, surface contamination, surface glossiness etc, Jotun must be consulted prior to the application of this product.

A primer without a matt finish may require sanding to improve hold up for the first coat of intumescent.

Contamination on primer may lead to slipping of intumescent during first coat application. It is the responsibility of the applicator to assess the condition of the primer coating before intumescent is applied. An on-site evaluation patch must be made to confirm surface preparation and adhesion before main application work commences.

Primer system maximum dry film thickness (DFT)

The typical primer thickness is 75 μ m. Primer DFT may vary in relation to the corrosive category and recommended total DFT required for corrosion protection with topcoat in consideration of ISO 12944-2/5.

The maximum recommended dry film thickness of the primer system is $150 \, \mu m$ depending on the type of product used. If the maximum primer thickness exceeds the recommended DFT, consult with Jotun technical department.

Reduction of high primer thickness

Areas of high primer thickness should be reduced to the recommended thickness as per the above guideline using medium grade sandpaper, grinding or other suitable methods followed by fresh water washing to remove dust/contaminants. Frequent changes of abrasive paper to be made to avoid polishing the surface. Abrasive sweep blasting followed by thorough cleaning/vacuuming can also be used.

Ensure the surface is clean and dry before application of this product.

Over coating

Maximum overcoating interval of a SteelMaster compatible primer with a matt finish may be extended up to 6 months. The primer system must be clean, dry and free from all forms of contamination and chalking prior to the application of SteelMaster. An on-site evaluation patch must be made to confirm surface preparation and adhesion before main application work commences. Refer to TSS-TI-126 SteelMaster On-site Adhesion Requirements.

When SteelMaster is to be applied on a compatible primer that has exceeded maximum overcoating interval or if the patch test showed unsuitable adhesion, light abrading may be required to achieve proper intercoat adhesion.

Organic primers/intermediates

Date of issue: 19 April 2024 Page: 3/15

Clean, dry and undamaged compatible coating (ISO 12944-4 6.1.4)

Areas with breakdown, damage, etc. must be prepared to the specified standard of blast cleaning to Sa 2½ (ISO 8501-1) or power tool cleaning to minimum St 3 (for small areas) and a coat of primer touched up before the product is applied.

Compatibility of intumescent coatings with zinc rich primers

The product must not be applied directly over zinc primers. An epoxy tie coat must be applied prior to the application of the SteelMaster system. The recommended Jotun approved tie coat is Penguard Primer or Penguard Tiecoat 100 applied at a DFT of 25-40 μm .

Zinc rich primers, usually based on epoxy resin or silicate binders, are often used as corrosion protection coatings on structural steelwork. Weathering or prolonged exposure of the zinc primer will lead to the formation of zinc salts (white rust) on the surface of the coating which is detrimental to adhesion. Zinc salts must be removed prior to application of the epoxy tie coat. Hard bristle brushes, careful sanding and/or high pressure water-washing at a minimum of 170 bar (2500 psi) to remove zinc salts. An epoxy tie coat may be applied over the epoxy zinc primer to prevent salts forming.

In all cases, the intumescent coating manufacturer must be consulted to confirm the compatibility of the primer system with the intumescent system and, where applicable, the tie coat.

Application

Environmental conditions

Intumescent coatings require a greater degree of environmental monitoring than conventional coatings. Intumescent coatings are moisture sensitive and must be protected against high humidity, rain and consequent water ponding both during application, transportation or during storage prior to being erected at site. Otherwise blistering/delamination will occur.

During transportation or construction, exposed SteelMaster must be protected from weather with a topcoat. Where a topcoat is specified, application must occur as soon as the final coat of this product is fully through dry.

Acceptable environmental conditions - before and during application

Before application, test the atmospheric conditions in the vicinity of the substrate for the dew formation according to ISO 8502-4.

Air temperature 5 - 40 °C Substrate temperature 5 - 40 °C Relative Humidity (RH) 10 - 85 %

The following restrictions must be observed:

- For application and drying, the air and substrate temperature should be greater than 5°C (41°F) and relative humidity below 85%.
- Only apply the coating when the substrate temperature is at least 3 °C (5 °F) above the dew point
- Do not apply the coating if the substrate is wet or likely to become wet
- Do not apply the coating if the weather is clearly deteriorating or unfavourable for application or curing
- Do not apply the coating in high wind conditions

It is advisable to apply the product to the steelwork when the building has been made water tight and dry. Where a topcoat is specified, application must take place in accordance with the recommended overcoating interval.

Application below 5°C (41°F) and at higher relative humidity will retard drying and could compromise ultimate coating performance. Engineering controls such as electric powered heaters or dehumidifiers to maintain environmental conditions within the acceptable parameters are recommended. Fuel fired heaters can create moisture and will be detrimental to the drying.

Date of issue: 19 April 2024 Page: 4/15

It is recommended that the ambient conditions are monitored every 4 hours. Where conditions vary it will be necessary to monitor at least every one or two hours. It is the applicator's responsibility to monitor these conditions in accordance with the specification and to maintain auditable records to demonstrate compliance.

Product mixing

Product mixing

Single pack

This product is a high viscosity product. It is possible that this may be affected when stored. It should be mixed with a powered mechanical paint mixer with a helical-ribbon impeller that is clean and fit for purpose. Mechanically mix for about 1-2 minutes to ensure that the product is mixed to a uniform consistency and to fully incorporate all of the ingredients into a homogenous mixture. Care should be taken to ensure no aeration or air bubbles are formed during the mixing process, especially in warmer climates.

Manual mixing is not recommended.

Thinner/Cleaning solvent

Do not add thinner. The product is ready to use and should not be thinned.

Cleaning solvent: Jotun Thinner No. 7

Application data

Spray application

Airless Spray Equipment

Pump ratio (minimum): 45:1

Pressure at nozzle (minimum) : 200 bar/2900 psi

Nozzle tip (inch/1000): 19-23

Nozzle output (litres/minute): 1.9-2.6

Filters (mesh): Remove filters

Material hose length: Maximum 60 meters

Several factors influence, and need to be observed to maintain the recommended pressure at the nozzle. Among factors causing pressure drop are:

- extended hoses or hose bundles
- extended hose whip-end line
- small internal diameter hoses
- high paint viscosity
- large spray nozzle size
- inadequate air capacity from compressor
- incorrect or clogged filters

Date of issue: 19 April 2024 Page: 5/15

Cosmetic finish

The cosmetic finish will depend largely on the method of application. Generally airless spray application will give a superior finish. Before the start of any application, it is recommended that all interested parties agree on the required surface finish. The applicator should spray and finish a sample area acceptable to the client representative. This area should be used as a reference area for the project. The applied film should be closed and uniform in thickness, free from voids and sagging.

ASFP Technical Guidance Document 11 section 2.1.11 outlines three standards of finish:

- **1. Basic Finish:** The coating system achieves the required fire and corrosion protection performance but is not required to achieve any required standard of finish
- **2. Decorative Finish:** In addition to item 1, a good standard of cosmetic finish is required when viewed from a distance of 5 meters. Minor orange peel or other textures resulting from application or localized repair is acceptable.
- **3. Bespoke Finish:** In addition to item 1, the finish coating is required to have a standard of evenness, smoothness and gloss agreed between specifier and contractor.

More work will be required to achieve the higher standards. It may be necessary to abrade the intumescent surface to remove texture. It may also be necessary to apply intumescent in a series of thinner coats. Topcoats are relatively thin and will tend to highlight rather than hide surface defects. It is, therefore, important to ensure that the required finish has been archived prior to application of the topcoat.

Film thickness per coat

Typical recommended specification range

Dry film thickness 200 - 750 μm Wet film thickness 270 - 1000 μm

All steel sections must be coated with correct film thickness to achieve the required fire rating. Please refer to the current loading tables. For further advice please contact your local Jotun office.

Note: The recommended film thickness is achievable by airless spray application in one coat. For higher film thickness, multiple coats will need to be applied. It can be possible to apply the product up to a wet film thickness (WFT) of 2000 μ m, depending upon steelwork configuration, geometry, primer used and ambient conditions. A typical WFT of 1000 μ m per coat is recommended. If thicker coats are applied sagging may occur and also the overcoating, drying and handling time will be extended. Refer to Application Guide for more detailed information.

Maximum allowable Dry Film Thickness (EN certification)

If measured mean thicknesses are in excess of these values, action needs to be taken to reduce the measured thickness to below the maximum allowable for the particular member shape and orientation.

I/H beams, 3 sided: 3260 μ m I/H beams, 4 sided: 3260 μ m I/H columns, 4 sided: 3490 μ m CHS & RHS columns: 5385 μ m RHS beams: 2206 μ m

Brush application

Brush application is only for small areas or repairs. Wet film thickness between 250 and $400\mu m$ may be achieved per coat. Application rates will always be slow when compared to airless spray. Multi-coat application by brush to achieve high DFT is neither practical nor economical and aesthetic finish will differ to spray application. Care should be taken to achieve a uniform DFT.

Single coat application

The recommended method of application is by heavy-duty airless spray equipment. When a project is preferred to be completed in the least number of coats, such as on-site application of a building being constructed, it can be possible to apply the product up to a wet film thickness (WFT) of 2000 μ m. A typical WFT of 1000 μ m per coat is recommended.

Date of issue: 19 April 2024 Page: 6/15

The most suitable method and technique will depend on a number of factors such as coating thickness required, configuration of the steelwork, access to the steelwork, programming of the project, presence of other trade and ambient conditions.

Multi-coat application method

Where the specified dry film thickness (DFT) is greater than 750 μm , for optimum drying and overcoating times, it is typically recommended to apply wet film thickness (WFT) of 700 - 1000 μm (or lower) per coat to enable faster throughput of steelwork when applied in shop. If thicker coats are applied sagging may occur and will also affect the drying and handling time. Drying time and over coating intervals will depend on local environmental conditions. It is good practice to determine the condition of the paint prior to overcoating. The previous SteelMaster layer shall be dry hard, which means no mark can be easily made in the paint by pressing firm with a thumb.

When an aesthetic finish is important, it is also recommended to apply in coats of approximately 1000µm WFT.

Where the total dry film thickness specified is greater than 2000 μ m, Jotun recommends minimum 24 hour over coating interval between each coat of SteelMaster at all temperatures.

Where temperature during application and drying is likely to exceed 40 $^{\circ}$ C, it is recommended to apply thin coats at WFT 300-400 μ m and to allow 3 hours drying before next coat of intumescent. Spray passes using mist coat or split wet-on-wet is recommended technique for each coat applied. This is achieved by spraying 2-3 passes on steel section from one end to the other and coming back 3-5 minutes after to apply additional passes to achieve WFT 300-400 mic. Apply further coats in the same sequence to build up the DFT to the specified thickness as per loading table/project specification. Wherever possible during application and drying, coated steel to be kept in dry, shaded areas to minimize surface drying defects. After topcoat is applied (especially dark shade topcoats) coated steel to be kept in dry, shaded areas to minimize system drying defects and softening in high temperatures. Refer to additional information in the section for Hot ambient conditions.

The over coating time between each coat depends on the total DFT required to be built up as a system. The actual drying time can vary depending on environmental conditions such as air temperature, relative humidity, weather conditions, ventilation and also the number of coats, total dry film thickness applied, etc. Water ponding must be avoided. Early exposure of SteelMaster to moisture, rainwater, high humidity or condensation will cause defects such as blistering and/or delamination.

Where a decorative or bespoke finish is needed, further measures may be required to achieve the desired finish. These may include: application in shade, application at cooler times of the day and reduced WFT per coat. In these cases, light abrasion before top coating can also improve overall finish to the coating system.

Film thickness measurement

Wet film thickness (WFT) measurement and calculation

To ensure correct film thickness, it is recommended to measure the wet film thickness continuously during application using a painter's wet film comb (ISO 2808 Method 1A). The measurements should be done as soon as possible after application.

Fast drying paints may give incorrect (too low) readings resulting in excessive dry film thickness. For multi layer physically drying (resoluble) coating systems the wet film thickness comb may give too high readings resulting in too low dry film thickness of the intermediate and top coats.

Use a wet-to-dry film calculation table (available on the Jotun Web site) to calculate the required wet film thickness per coat.

Dry film thickness (DFT) measurement

The effectiveness of an intumescent coating is controlled by thickness applied to give the appropriate fire rating. It is essential to ensure that the correct thickness applicable to each section size is obtained according to the loading tables issued by Jotun. It is the responsibility of the applicator to ensure all coatings are applied in accordance with this working procedure and that the specified dry film thickness is achieved on each section.

The film thicknesses for Jotun's intumescent coating are included in the Jotun loading tables (DFT). These thicknesses apply only to the intumescent coating and are not inclusive of any primer coat. Allowance will have to be made for the thickness of primer & topcoat (deduct) when measuring the overall system.

Primer thickness may be determined either after application in shop, or on site prior to commencement of application of the intumescent basecoat. It should be a requirement of the contract that steelwork delivered to site in primed condition should be accompanied by a documented record of primer thickness supplied by the

Date of issue: 19 April 2024 Page: 7/15

This Application Guide supersedes those previously issued.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system. For your nearest local Jotun office, please visit our website at www.jotun.com.

fabricator. If this is not available, the site contractor must be required to conduct a primer thickness survey prior to commencement of intumescent application. Establishing the correct primer thickness is important. Measurement at this stage will more easily facilitate any subsequent corrections which may prove necessary. If the total intumescent dry film coating thickness, allowing for the underlying primer, is found to be within specified tolerances, application of the next coat (usually a decorative and/or protective coat) can proceed.

Indentation of the intumescent coating by the measuring instrument probe indicates insufficient hardness of the intumescent coating and measurements should be deferred. However, if programming requires coating to proceed urgently, by agreement with the specifier a shim of known thickness can be used to spread the load of the probe tip on the coated surface, allowing measurement to proceed before the coating has fully hardened. The dry film thickness of coating and shim together can then be measured and the shim value deducted to give the coating thickness.

If the total intumescent dry film coating thickness is found to be outside the specified tolerances, the procedure outlined below.

The recommended procedure for measuring dry film thickness and the acceptance criteria is based on **Section 4.7 of ASFP Technical Guidance Document 11.**

Sections must be measured in accordance with the following guidelines:

(i) I Sections, Tee Sections and Channels

Webs: Two readings per metre length on each face of web

Flanges: Two readings per metre length on the outer face of each flange

One reading per metre length on the inner face of each flange.

(ii) Square and Rectangular Hollow Sections and Angles:

Two readings per metre length on each face.

(iii) Circular Hollow Sections:

Eight readings per metre length evenly spread around the section

Where members are less than 2 m in length, three sets of readings shall be taken, one at each end and at the centre of the member. Each set shall comprise the number of readings on each face given by (i), (ii) or (iii) above, as appropriate.

When taking DFT readings, it is recommended that no readings are taken within 25 mm of the edge of an I section or within 25 mm of the join of flange to web of an I section.

The average dry film thickness (DFT) applied to each steel section shall be greater than or equal to the specified dry film thickness.

Where any single thickness reading is found to be less than 80 % of the specified DFT, a further three readings shall be taken within 200 to 300 mm around the area of the low reading. The initial reading may be considered isolated if all the additional readings are at least 80 % of the specified nominal value.

If one or more of the additional readings are less than 80 % of the specified nominal value, further readings shall be made to determine the extent of the area of under thickness. In such cases, low thickness areas identified must be brought up to the specified dry film thickness before proceeding to the next application stage.

Individual dry film thickness readings of less than 50 % of the specified DFT are not acceptable.

The maximum average measured dry film thickness of any face of any member should not exceed the absolute maximum certified thickness for the particular member shape and orientation. Consult with your Jotun representative.

Other recommended procedure based on **AMPP SSPC-PA2 (2022) Procedure for Determining Conformance to Dry Coating Thickness Requirements** – Appendix 11 Method for Measuring the Thickness of Intumescent (Fireproofing) and Cryogenic Spill Protection Coatings Applied to Load-Bearing Structural Steel Members, Fire Divisions, Pipework, and Vessels/Tanks

The dry film thickness (DFT) acceptance criteria (min / average / max) should be defined within the chosen standard for the project and is agreed by all parties in advance of project start-up.

Example:

AMPP SSPC-PA2 (2022), Appendix 11, Table A11.1 whereby the specifier may select the fireproofing thickness restriction level for a given project. Level 3 is satisfactory by Jotun.

In all cases, the average dry film thickness (DFT) applied to each steel section shall be greater than or equal to the specified dry film thickness. If required, the maximum average measured dry film thickness should not

Date of issue: 19 April 2024 Page: 8/15

exceed the absolute maximum certified thickness for the particular member shape and orientation. Consult with your Jotun representative.

Correction of inadequate coating thickness

The importance of dry film thickness checking is emphasized where inadequate thickness is identified prior to application of the topcoat.

In such situations it is a relatively simple exercise to define the extent of the deficient area(s) and to apply further coat(s) of intumescent product to bring the overall thickness up to acceptable standards.

If low thickness is not detected until after the topcoat has been applied the topcoat must be completely removed and apply further coat(s) of intumescent product to bring up to specification. Where the intumescent coating thickness exceeds the limits stated in the manufacturer's recommendations, guidance must be obtained from the manufacturer.

Ventilation

Sufficient ventilation is very important to ensure proper drying/curing of the film.

Forced ventilation such as portable fans is permissible, however not in direct contact with the freshly applied product as it can lead to surface skinning, wrinkling of the coating or other related defects.

Coating loss

The consumption of paint should be controlled carefully, with thorough planning and a practical approach to reducing loss. Application of liquid coatings will result in some material loss. Understanding the ways that coating can be lost during the application process, and making appropriate changes, can help reducing material loss.

Some of the factors that can influence the loss of coating material are:

- type of spray gun/unit used
- air pressure used for airless pump or for atomization
- orifice size of the spray tip or nozzle
- fan width of the spray tip or nozzle
- the amount of thinner added
- the distance between spray gun and substrate
- the shape of the substrate target
- environmental conditions such as wind and air temperature

Pre-commissioning considerations

Off-site application

Single pack intumescent coatings, like SteelMaster, are always venerable to damage due to the inherent nature and thermoplasticity of such products. Special care shall be taken to handle steelwork coated with SteelMaster.

During transportation or construction, single pack SteelMaster must be protected from condensation, ponding/pooling water due to rainfall or running water, either by coverage or by drainage. Damage to the coating system can occur particularly between in-shop applications through to final erection on site. For transportation of SteelMaster coated steelwork from the fabrication yard to the erection site, it is necessary that an approved topcoat is applied at the specified dry film thickness as soon as the final coat of SteelMaster is fully through dry. Topcoated SteelMaster will have limited weather resistance but to allow for the construction phase, the following must be adhered to:

Handling

- Coatings should be sufficiently dry before handling and members should be lifted at designated lifting points or by using lifting brackets where available.
- The use of appropriate lifting chains or slings to be considered to minimise damage to coated steel.
- Single lift should be used unless specially designed multi-lift cradles are available.

Date of issue: 19 April 2024 Page: 9/15

• It should be noted that the potential for damage increases with coating thickness, as does the difficulty of repair.

Transportation

- The loading of trailers should be carefully planned, with timber supports positioned, where possible, in uncoated contact areas (e.g. areas to receive bolted connections). Where contact of supports with coated areas is unavoidable, members should be supported on their toes to minimise the contact area.
- Members which may fill with water should be prevented from doing so by the use of covers which will not react with the intumescent coating system, should they come into contact.
- Loads are best secured with the careful use of clean chains and it is advised that loaders wear overshoes and where possible avoid walking on coated surfaces in order to minimise contamination.

Storage

- Where site storage is unavoidable, similar care should be taken in the handling and support of the coated steel using the same lifting and support points as those used in transportation.
- The steelwork must be stored off ground and under cover both at the application facility and once transported to site. Any temporary covers must allow ventilation to prevent a humid atmosphere building up around the steelwork.
- Once dried occasional condensation is acceptable but this must not amount to ponding or running water. Protect from frost and snow.
- Storage areas should be roped off with signage clearly explaining the need to avoid contamination and mechanical damage to the coated steelwork.

Weather Resistance

SteelMaster intumescent coatings have different levels of resistance to weather depending on the intumescent ingredients used and resin type the coating is based on. When referring to weather resistance, the primarily consideration is resistance to water in any form.

Generally, in order of resistance to weather the most resistant are epoxy formulated products (e.g. SteelMaster 1200HPE), followed by the one component solvent-borne acrylic intumescent coatings (e.g. SteelMaster 90SB), and then the one component waterborne acrylic intumescent coatings (e.g. SteelMaster 1200WF).

These differences in weather resistance are important to understand and consider when specifying SteelMaster products for both offsite and onsite application.

The following instances can be the cause and/or contributing factors for the likelihood of water defects:

- Geographical location, season and propensity for rain.
- · High humidity conditions.
- Storage & protection of laid down steelwork.
- Horizontal surfaces where moisture & water is allowed to collect.
- Pinholes in topcoat.
- Number of coats of topcoat.
- Steelwork edges with low coating thickness or incomplete topcoat.
- Mechanical damages to topcoat and intumescent.
- Capillary action of water at terminations.
- · Water ingress from other areas.

Examples of water defects on acrylic intumescent products are:

- Blistering of topcoat and/or intumescent
- Wrinkling of topcoat and/or intumescent
- Cracking and flaking of the system
- Chalking of topcoat
- Green growth

Date of issue: 19 April 2024 Page: 10/15

Drying and Curing time

Substrate temperature	5 °C	10 °C	23 °C	40 °C
Surface (touch) dry	2 h	1 h	30 min	20 min
Dried to handle	= ::		16 h	
Dry to over coat, minimum	24 h	8 h	6 h	6 h

Dry to overcoat minimum is with self. See additional guidance for Topcoating.

All drying times have been measured at a wet film thickness of 1000 μm under controlled temperature and relative humidity below 85 %.

Drying times will depend on local environmental conditions such as air and substrate temperature, relative humidity, weather conditions, ventilation and also the number of coats, total dry film thickness applied, etc.

Drying time, over coating and topcoating intervals may be extended if there is a drop in temperature, high humidity, poor ventilation or if multi-coat system is applied. It is good practice to determine the condition of the paint prior to overcoating. The SteelMaster layer should be dry hard, which means no mark can be easily made in the paint by pressing firm with a thumb. Refer to Application Guide (AG) for multi-coat application method and additional information.Refer to AG for multi-coat application method.

Topcoating

The recommended minimum overcoating interval of this product with approved topcoats is 24 hours. For approved two component topcoats, if the dry film thickness (DFT) of SteelMaster exceeds 2000 μ m or when ambient temperature is expected to be above 30°C, the minimum overcoating interval of 48 hours is recommended.

Earlier overcoating with an approved acrylic topcoat is possible, such as for on-site application: Dry film thickness of SteelMaster;

- \bullet 750 $\mu m,$ minimum 1 hour at 23°C, minimum 2 hours at 10°C.
- 1500 μm , minimum 2.5 hours at 23°C, minimum 4 hours at 10°C.
- 3000 µm, minimum 3 hours at 23°C, minimum 8 hours at 10°C.

Note that early overcoating with a topcoat may delay the drying of the total coating system.

In regions where drying temperatures can be expected to be above 30°C and/or with high humidity conditions, recommended minimum overcoating with approved acrylic topcoat is 24 hours.

Prior to application of topcoat, the applicator must ensure that the specified dry film thickness has been achieved. The system should be dry to handle and coating thickness gauge should not to leave an indentation on the coating when readings are taken.

Surface (touch) dry: The state of drying when slight pressure with a finger does not leave an imprint or reveal tackiness.

Dried to handle: Minimum time before the coated objects can be handled without physical damage.

Dry to over coat, minimum: The recommended shortest time before the next coat can be applied.

Maximum over coating intervals

Maximum time before thorough surface preparation is required. The surface must be clean, dry and suitable for over coating. Inspect the surface for chalking and other contamination. Dust to be blown off with clean compressed air or use a damp cloth with fresh water to wipe clean SteelMaster surface, making sure not to saturate/soak the surface. Use alkaline detergent on localized spots of oil/grease contamination. Allow to dry before overcoating. If heavy contamination (not oil/grease), lightly abrade with fine grade sandpaper and remove dust.

If maximum over coating interval is exceeded the surface should also be carefully roughened to ensure good inter coat adhesion.

Date of issue: 19 April 2024 Page: 11/15

Areas for atmospheric exposure

Average temperature during drying/curing

5 °C 10 °C 23 °C 40 °C

Itself

extended extended extended

Refer to your Jotun representative for a detailed fire protection specification including approved primer and topcoat systems.

Where a topcoat is specified, application must occur as soon as the final coat of this product is fully through dry. During transportation or construction, exposed SteelMaster must be protected from weather with a topcoat.

Extended – Where an extended overcoating time is stated, the product can be overcoated after an indefinite time period, however the anticipated level of intercoat adhesion can only be achieved through good painting practices. The overcoating time depends on environmental exposure conditions, type of topcoat, and other factors. If the surface has signs of chalking or contamination, surface treatment, such as methodical abrading followed by freshwater washing should be employed. Alkaline detergent should be used to remove heavy contamination.

Other conditions that can affect drying / curing / over coating

Environments and Topcoating

Only topcoats approved by Jotun can be applied over this product. Contact Jotun's technical department for the approved topcoats. Prior to application of the topcoat ensure that the product has been applied to the specified DFT. The surface must be clean, dry and free of contamination before applying the topcoat.

Topcoat will normally be applied as per specification.

- For exposure to corrosivity category C1 (ISO 12944-2) topcoat not necessary if intumescent is applied and maintained in a C1 environment.
- For exposure to corrosivity category C2 (ISO 12944-2) a minimum of one coat of topcoat at 50 μm DFT is recommended.
- For corrosivity category C3 and C4 (ISO 12944-2) Jotun recommends two coats of topcoat at 50 μm DFT per coat.
- It is recommended that the total dft of the topcoat does not exceed 150 μm .
- During transportation or construction, SteelMaster must be protected from condensation, ponding/pooling water due to rainfall or running water. This also extends to snow and ice. This is applicable for perimeter steelwork and intumescent systems destined for a C1 (ISO 12944-2) internal environment that are exposed to a higher environment category during the construction phase.

Apply using an airless spray machine and follow the instructions contained on the technical data sheets. Topcoat can be applied on site by brush/roller, where there is no access or limited access and shall be recorded in the reports.

It is important that the topcoat is applied at the specified DFT film thickness. To achieve a uniform finish on an uneven surface is difficult and may require additional coats. As a guide the wet film thickness of the topcoat should be measured at regular intervals to ensure the specified dry film thickness is obtained.

Top coated steelwork should not be exposed to direct sunlight and/or elevated temperatures immediately after application of the topcoat as this may cause blistering due to entrapped solvents within the SteelMaster.

Hot ambient conditions

Solvent borne acrylic products are thermoplastic products, which means the product can become soft at temperatures above 30°C. Areas with a dark shaded topcoat have the tendency to heat up quickly when exposed to direct sunlight as energy is absorbed.

Thermoplasticity in solvent borne acrylic coatings, whether it is paint or intumescent products, does not disappear. When the coating has cooled down, hardness recovers, provided the coating is sufficiently dry. This does not affect the fire performance properties of the product.

It is sometimes difficult to distinguish softness caused by solvent being present in the coating and softness caused by thermoplasticity. Softness by solvent presence means that the product has not sufficiently dried.

Date of issue: 19 April 2024 Page: 12/15

This Application Guide supersedes those previously issued.

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system. For your nearest local Jotun office, please visit our website at www.jotun.com.

Providing more drying time will enabling solvent evaporation and improve hardness/reduce softness of the coating. Softness by thermoplasticity can be limited by measures such as protective shade.

The softening characteristic of thermoplastic coatings is more common in warmer climates; therefore, it is best to evaluate the drying condition of such coatings during the coolest time of day and in areas not exposed to direct sunlight.

Internal angles & over application

In areas such as corners and internal angles of open sections, it is possible that hairline cracks could occur. Excessive film thickness will lead to extended drying and may lead to surface drying defects. Applied film thickness and drying conditions will affect the rate at which these may develop.

To prevent these effects, it will be necessary to control the film thickness in these areas and the applied wet film thickness per coat should be reduced from the recommended maximum. Particular caution should be exercised when coating narrow-webbed sections.

This cracking is not detrimental to the fire performance of SteelMaster and are easily repaired for aesthetics. Lightly abrade the area and apply intumescent by brush and/or putty knife to fill in the gap. Where a topcoat is specified, stripe coat of topcoat followed by full coat of topcoat.

Repair of coating system

It is always recommended that all types of damages are repaired at the earliest opportunity to avoid any moisture ingress that can lead to degradation of the intumescent coating. The repair method will depend on the extent of damage.

This repair procedure applies to these types of example scenarios:

- a) Areas of mechanical damages due to site works
- b) Coating damaged due to fixing additional brackets by welding
- c) Burn damages due to welding
- d) Any other damages down to bare steel
- e) SteelMaster surface damages
- f) Damages caused by high humidity, moisture, entrapped air, etc causing blistering

Damage to Topcoat only

- If only the topcoat is damaged, then remove loose unsound coatings and feather the rough edges.
- Ensure the surface is free from contamination and dry before applying the topcoat to the original specified dry film thickness, following the topcoat product application guide.

Damage to SteelMaster coating

Depending on the extent of damage, lightly abrade the surface or "cut out" as described below.

- Cut out the SteelMaster coating at least 50 mm from the damaged/heat affected area, in all directions back to sound edge (large enough to allow manual/mechanical preparation).
- In case of scattered spot blistering/damages caused due to water ingress, high humidity or heat, the blisters need to be cut open. For extensive blistering or damages of the SteelMaster, the coating needs to be removed to bare/primed steel.
- Sand down the affected area and feather the edges of each coating layer.
- Repair area is to be clean, dry and free from any contamination before painting.
- Ensure the primer is not damaged. If the primer is damaged a priming coat will be necessary.
- Apply SteelMaster to the original specified film thickness for fire protection. May require multiple coats depending on application method and required thickness.
- Ensure SteelMaster has dried sufficiently as per product application guide before overcoating.
- Apply the topcoat to the original specified dry film thickness, following the topcoat product application guide.
- When applying SteelMaster, the intumescent coating must not be applied over top coated areas. Ensure to limit the primer / SteelMaster / topcoat within its own layers of coating on feathered edges.

Damage to the coating system that exposes bare steel

- Cut out the SteelMaster coating at least 50 mm from the damaged/heat affected area, in all directions back to sound edge (large enough to allow manual/mechanical preparation).
- Damage to small areas may be power tool cleaned to St 3 (ISO 8501-1) to a bare metal finish with a surface profile. Large areas of damage should be prepared by dry abrasive blast cleaned to Sa 2½ (ISO 8501-1) preferably by the use of vacuum blasting equipment to avoid damage to intact coating.
- Edges of intact coating around damage area shall be feathered to ensure a smooth transition from the coating to the prepared steel.
- For spray application, the surrounding area must be covered so that overspray to the sound coating does not occur during repair application.
- Substrate and repair area is to be clean, dry and free from any contamination before painting.
- Apply original primer or the recommended repair primer to the specified dry film thickness, following the primer product application guide.

Date of issue: 19 April 2024 Page: 13/15

- Apply SteelMaster to the original specified film thickness for fire protection. May required multiple coats depending on application method and required thickness.
- Ensure SteelMaster has dried sufficiently as per product application guide before overcoating.
- Apply the topcoat to the original specified dry film thickness, following the topcoat product application guide.
- Ensure to limit the primer / SteelMaster / topcoat within its own layers of coating on feathered edges.

Repair Primer:

Approved primer to patch prime exposed steel applied at a typical DFT of 75-100 μ m or as per original specified DFT. Care should be taken to avoid overlap of primer onto the adjacent SteelMaster.

Quality assurance

The following information is the minimum required. The specification may have additional requirements.

- Confirm that all welding and other metal work has been completed before commencing pre-treatment and surface preparation
- Confirm that installed ventilation is balanced and has the capacity to deliver and maintain the RAQ
- Confirm that the required surface preparation standard has been achieved and is held prior to coating application
- Confirm that the climatic conditions are within recommendations in the AG, and are held during the application
- Confirm that the required number of stripe coats have been applied
- Confirm that each coat meets the DFT requirements in the specification
- Confirm that the coating has not been adversely affected by rain or other factors during curing
- Observe that adequate coverage has been achieved on corners, crevices, edges and surfaces where the spray gun cannot be positioned so that its spray impinges on the surface at 90° angle
- Observe that the coating is free from defects, discontinuities, insects, abrasive media and other contamination
- Observe that the coating is free from misses, sags, runs, wrinkles, fat edges, mud cracking, blistering, obvious pinholes, excessive dry spray, heavy brush marks and excessive film build
- Observe that the uniformity and colour are satisfactory

All noted defects shall be fully repaired to conform to the coating specification.

Caution

This product is for professional use only. The applicators and operators shall be trained, experienced and have the capability and equipment to mix/stir and apply the coatings correctly and according to Jotun's technical documentation. Applicators and operators shall use appropriate personal protection equipment when using this product. This guideline is given based on the current knowledge of the product. Any suggested deviation to suit the site conditions shall be forwarded to the responsible Jotun representative for approval before commencing the work.

For further advice please contact your local Jotun office.

Health and safety

Please observe the precautionary notices displayed on the container. Use under well ventilated conditions. Do not inhale spray mist. Avoid skin contact. Spillage on the skin should immediately be removed with suitable cleanser, soap and water. Eyes should be well flushed with water and medical attention sought immediately.

Accuracy of information

Always refer to and use the current (last issued) version of the TDS, SDS and if available, the AG for this product. Always refer to and use the current (last issued) version of all International and Local Authority Standards referred to in the TDS, AG & SDS for this product.

Colour variation

When applicable, products primarily meant for use as primers or antifoulings may have slight colour variations from batch to batch. Such products and epoxy based products used as a finish coat may chalk when exposed to sunlight and weathering.

Colour and gloss retention on topcoats/finish coats may vary depending on type of colour, exposure environment such as temperature, UV intensity etc., application quality and generic type of paint. Contact your local Jotun office for further information.

Reference to related documents

The Application Guide (AG) must be read in conjunction with the relevant specification, Technical Data Sheet (TDS) and Safety Data Sheet (SDS) for all the products used as part of the coating system.

When applicable, refer to the separate application procedure for Jotun products that are approved to classification societies such as PSPC, IMO etc.

Date of issue: 19 April 2024 Page: 14/15

This Application Guide supersedes those previously issued.

Symbols and abbreviations

min = minutes

h = hours

d = days

°C = degree Celsius

o = unit of angle

um = microns = micrometres

g/I = grams per litre

g/kg = grams per kilogram

 $m^2/l = square metres per litre$

 mg/m^2 = milligrams per square metre

psi = unit of pressure, pounds/inch2

Bar = unit of pressure

RH = Relative humidity (% RH)

UV = Ultraviolet

DFT = dry film thickness

WFT = wet film thickness

TDS = Technical Data Sheet

AG = Application Guide

SDS = Safety Data Sheet

VOC = Volatile Organic Compound

MCI = Jotun Multi Colour Industry (tinted colour)

RAQ = Required air quantity

PPE = Personal Protective Equipment

EU = European Union

UK = United Kingdom

EPA = Environmental Protection Agency

ISO = International Standards Organisation

ASTM = American Society of Testing and Materials

AS/NZS = Australian/New Zealand Standards

NACE = National Association of Corrosion Engineers

SSPC = The Society for Protective Coatings

PSPC = Performance Standard for Protective Coatings

IMO = International Maritime Organization

ASFP = Association for Specialist Fire Protection

Disclaimer

The information in this document is given to the best of Jotun's knowledge, based on laboratory testing and practical experience. Jotun's products are considered as semi-finished goods and as such, products are often used under conditions beyond Jotun's control. Jotun cannot guarantee anything but the quality of the product itself. Minor product variations may be implemented in order to comply with local requirements. Jotun reserves the right to change the given data without further notice.

Users should always consult Jotun for specific guidance on the general suitability of this product for their needs and specific application practices.

If there is any inconsistency between different language issues of this document, the English (United Kingdom) version will prevail.

Date of issue: 19 April 2024 Page: 15/15